Publications
​
Umezaki Y, Hidalgo S, Nguyen E, Nguyen T, Suh J, Uchino S.S., Chiu J.C., Hamada, F.N. Taste triggers a homeostatic temperature control in hungry flies eLife, 2024 (BioRxiv. 2022. doi: 10.1101/2022.09.30.510382)
Goda T., Umezaki. Y., Hamada F.N., Molecular and neural mechanisms of temperature preference rhythm in Drosophila melanogaster J.Biol.Rhythms, 2023 May 24
​
Chen, SC., Tang, X., Goda, T., Umezaki, Y., Riley, A.C., Sekiguchi, M., Yoshii, T and Hamada F. N. Dorsal clock networks drive temperature preference rhythms in Drosophila, Cell Reports, 2022, Apr 12;39(2):110668
​
Goda, T., Umezaki, Y., Alwattari, F., Seo, H.W., and Hamada F. N. Neuropeptides PDF and DH31 hierarchically regulate free-running rhythmicity in Drosophila circadian locomotor activity. Scientific Reports, 2019 Jan 29;9(1):838
​
Goda T., and Hamada F.N. Drosophila temperature preference rhythms: An innovative model to understand body temperature rhythms. Int. J Mol. Sci, 2019. review
Umezaki, Y., Hayley, S.E., Chu, M, L., Seo, H, W., Shah, P., and Hamada F.N. Feeding-state-dependent modulation of temperature preference requires insulin signaling in Drosophila warm-sensing neurons. Current Biology, 2018 March 5;28(5):779-787
Stanewsky R: F1000Prime Recommendation. In F1000Prime, 18 Apr 2019; 10.3410/f.732757110.793558782
Goda, T., Doi, M., Umezaki, Y., Murai, I., Shimatani, H., Chu, M.L., Nguyen, V.H., Okamura.H., and Hamada F.N. Calcitonin receptors are ancient modulators for rhythms of preferential temperature in insects and body temperature in mammals. Genes and Development, 2018 Jan 15;32(2):140-155
​
Goda T., and Hamada F.N. Evolutionarily conserved mechanisms underlying body temperature rhythms in mammals and flies. Journal of Clinical and Experimental Medicine 2018. review
​
Tang, X., Roessingh, S., Hayley, S. E., Chu, M. L., Tanaka, K. L., Werner W., Stanewsky, R., and Hamada F. N. The role of PDF neurons in setting the preferred temperature before dawn in Drosophila. eLife, 2017 May 2; 6
Insight: Yadlapalli, S and Shafer, O.T. How a brain keeps its cool. eLife, 2017 May 30;6
Goda, T, Tang, X., Umezaki, Y, Chu M.L, Kunst M., Nitabach, M.N., and Hamada F. N. Drosophila DH31 neuropeptide and PDF receptor regulate night-onset temperature preference. The Journal of Neuroscience, 2016 Nov 16;36(46):11739-11754.
​
Head, L.M., Tang, X., Hayley, S.E., Goda, T., Umezaki, Y., Chang, E.C., Leslie J.R., Fujiwara, M., Garrity, P.A. and Hamada F.N. The influence of light on temperature preference in Drosophila. Current Biology, 2015 Apr 20;25(8):1063-8.
Clandinin T and Gao X: F1000Prime Recommendation. In F1000Prime, 28 Apr 2015; 10.3410/f.725432170.793505977
Goda, T, Leslie J., and Hamada F. N. Design and analysis of temperature preference rhythm in Drosophila. J. Vis. Exp, 2014 Jan 13; (83)
Tang X., Platt M.D., Lagnese C.M., Leslie J.R., and Hamada F.N. Temperature integration at the AC thermosensory neurons in Drosophila. The Journal of Neuroscience, 2013 Jan 16;33(3):894-901.
Kaneko H., Head L.M., Ling J., Liu Y., Hardin. P.E., Emery.P., and Hamada F.N. Circadian rhythm of temperature preference and its neural control in Drosophila. Current Biology, 2012 Oct 9;22(19):1851-7
​
​
​
Selected Publications before 2012
Hamada, F. N., Rosenzweig, M., Kang, K., Pulver, S., Ghezzi, A., Jegla, T., & Garrity, P. A. An internal thermal sensor controlling temperature preference in Drosophila. Nature, 2008 Jul 10;454(7201):217-20.
​
Hamada, F. N., Park, P. J., Gordadze, P. R., & Kuroda, M. I. 2005. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes & Development,19(19):2289-94
​
​
​
​
​
​